MAGPIE: An Agent Platform for the Development of Mobile Applications for Pervasive Healthcare

3rd Workshop AI-AM / NetMed
Prague, 18/08/2014

Albert Brugués1,2, Stefano Bromuri1, Josep Pegueroles2 and Michael Schumacher1

1University of Applied Sciences – Western Switzerland (HES-SO)
2Universitat Politècnica de Catalunya (UPC)
Different Components

- AGents
- Mobile computing
- Publish/subscribe
- Intelligent p-hEalthcare
p-Healthcare

• Architecture of Personal Health System (PHS)
Mobile Computing

• Well established market of smartphones and tablets
 ➢ HW with powerful computation capabilities
 ➢ New operating systems for handheld devices

• Android
 ➢ Open source solution
 ➢ Google play
Agents

- Autonomous, reactive, pro-activeness, social
- In PHSs shared environment with the patient
- Kinds of reasoning
 - Detection
 - Classification
 - Prediction

IntelligentAgent-SimpleReflex" by Utkarshraj Atmaram
Publish/subscribe

- Distributed event-based system
 - In PHSs events are alerts reported to the patient
 - Connecting patients with patients

P.T.H.Eugster et al., 2003
Putting it all together…

- State-of-the-art of PHSs
 - Tier-1: Patient + BAN
 - Tier-2: Mobile device acting as a gateway
 - Tier-3: Remote monitoring in a central server

- MAGPIE
 - Tier-1: Patient + BAN
 - Tier-2: Local monitoring with a mobile agent environment deployed in Android
 - Tier-3: Publish/subscribe architecture where relatives and doctors can subscribe to patient events in the mobile agent environment
Agent Platform (Tier 2)

- UML class diagram
 - Based on environment as first class abstraction (Weyns et al., 2007)
Deeper View

- Environment mediates the interactions between agents and context entities
 - Agents are interested on services
 - Context entities offer services
Active components’ lifecycle

- Environment
 - Initialization
 - Sleep
 - Notification
 - Agent Execution

- Agents
 - Initialization
 - Perceive
 - Is Model Change?
 - Update
 - New monitoring model loaded in the mind
 - Modify Model
Interactions for monitoring
Knowledge representation (I)

- Monitoring rules
 - Combination of events that in case of happening an alert must be triggered and notified
 - Two or more events in a time window where the order is not considered

- Events
 - Measurement of a physiological parameter that can be categorized as: high, normal, low
Knowledge representation (II)

• Based on the Event Calculus

(EC0) \texttt{holds_at}(F=V,0) :- \texttt{initially}(F=V).

(EC1) \texttt{holds_at}(F=V,T) :- \texttt{initiates_at}(F=V,Ts,T),

Ts < T, not \texttt{broken}(F=V, Ts, T).

(EC2) \texttt{broken}(F=V1, [Tmin, Tmax]) :-

\texttt{(terminates_at}(F=V1,T), Tmin < T, Tmax > T);

\texttt{(initiates_at}(F=V2, Ti), not V1=V2, Tmin < Ti, Tmax > Ti).

(EC3) \texttt{initiates_at}(F=V, T) :- \texttt{happens_at}(Ev, T), Conditions[T].

(EC4) \texttt{terminates_at}(F=V, T) :- \texttt{happens_at}(Ev, T), Conditions[T].
Examples (I)

• Simple example

\[
\text{initiates}_\text{at}(\text{alert}(\text{Type})=\text{message}, T) \ :- \ \text{happens}_\text{at}(Ev, T),
\]
\[
Ev=\text{glucose}(\text{Value}),
\]
\[
\text{Value} \geq 8.
\]

• Complex rule (2 ev. 1 phy.)

\[
\text{initiates}_\text{at}(\text{alert}(\text{Type})=\text{message}, T) \ :- \ \text{more}_\text{than}(2, (
\]
\[
\text{happens}_\text{at}(Ev, Tev),
\]
\[
Ev=\text{blood}_\text{pressure}(\text{Value}),
\]
\[
\text{Value} \geq 130,
\]
\[
\text{last}_\text{hour}(Tev, T)
\]
\[
)).
\]
Examples (II)

• Complex rule (3 ev. 2 phy.)

\[
\text{initiates_at}(\text{alert}(\text{Type})=\text{inner_alert}, T) :- \text{more_than}(2, (\\
\quad \text{happens_at}(\text{Ev}_1, T_{ev1}), \\
\quad \text{Ev}_1=\text{blood_pressure}(\text{Value}_1), \\
\quad \text{Value}_1 \geq 130, \\
\quad \text{last_two_hours}(T_{ev1}, T) \\
\)), \\
\quad \text{more_than}(1, (\\
\quad \text{happens_at}(\text{Ev}_2, T_{ev2}), \\
\quad \text{Ev}_2=\text{blood_pressure}(\text{Value}_2), \\
\quad \text{Value}_2 \geq 130, \\
\quad \text{last_two_hours}(T_{ev2}, T) \\
\)).
\]

• Complex and recursive

\[
\text{initiates_at}(\text{alert}(\text{Type})=\text{outer_alert}, T) :- \text{more_than}(3, (\\
\quad \text{happens_at}(\text{Ev}, T_{ev}), \\
\quad \text{Ev}=\text{alert_sent}(\text{inner_alert}), \\
\quad \text{last_two_weeks}(T_{ev}, T) \\
\)).
\]
Conclusions

• Agents can simplify the definition of PHS
• Scalability can be improved with agents in Tier 2
• MAGPIE is based on Android
• Monitoring rules are useful in a scenario where there is no data available
• Future research:
 ➢ Web interface for rules
 ➢ Pub/sub (Tier 3)
 ➢ Evaluation: scalability and patterns in real data
MAGPIE: An Agent Platform for the Development of Mobile Applications for Pervasive Healthcare

Thanks for your attention!